Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5841, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462648

RESUMO

Cancer presents a significant global health burden, resulting in millions of annual deaths. Timely detection is critical for improving survival rates, offering a crucial window for timely medical interventions. Liquid biopsy, analyzing genetic variations, and mutations in circulating cell-free, circulating tumor DNA (cfDNA/ctDNA) or molecular biomarkers, has emerged as a tool for early detection. This study focuses on cancer detection using mutations in plasma cfDNA/ctDNA and protein biomarker concentrations. The proposed system initially calculates the correlation coefficient to identify correlated features, while mutual information assesses each feature's relevance to the target variable, eliminating redundant features to improve efficiency. The eXtrem Gradient Boosting (XGBoost) feature importance method iteratively selects the top ten features, resulting in a 60% dataset dimensionality reduction. The Light Gradient Boosting Machine (LGBM) model is employed for classification, optimizing its performance through a random search for hyper-parameters. Final predictions are obtained by ensembling LGBM models from tenfold cross-validation, weighted by their respective balanced accuracy, and averaged to get final predictions. Applying this methodology, the proposed system achieves 99.45% accuracy and 99.95% AUC for detecting the presence of cancer while achieving 93.94% accuracy and 97.81% AUC for cancer-type classification. Our methodology leads to enhanced healthcare outcomes for cancer patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Biópsia Líquida/métodos , Ácidos Nucleicos Livres/genética , Neoplasias/diagnóstico , Neoplasias/genética , DNA de Neoplasias , Aprendizado de Máquina
2.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267425

RESUMO

Lung cancer is one of the most dreadful cancers, and its detection in the early stage is very important and challenging. This manuscript proposes a new computer-aided diagnosis system for lung cancer diagnosis from chest computed tomography scans. The proposed system extracts two different kinds of features, namely, appearance features and shape features. For the appearance features, a Histogram of oriented gradients, a Multi-view analytical Local Binary Pattern, and a Markov Gibbs Random Field are developed to give a good description of the lung nodule texture, which is one of the main distinguishing characteristics between benign and malignant nodules. For the shape features, Multi-view Peripheral Sum Curvature Scale Space, Spherical Harmonics Expansion, and a group of some fundamental morphological features are implemented to describe the outer contour complexity of the nodules, which is main factor in lung nodule diagnosis. Each feature is fed into a stacked auto-encoder followed by a soft-max classifier to generate the initial malignancy probability. Finally, all these probabilities are combined together and fed to the last network to give the final diagnosis. The system is validated using 727 nodules which are subset from the Lung Image Database Consortium (LIDC) dataset. The system shows very high performance measures and achieves 92.55%, 91.70%, and 93.40% for the accuracy, sensitivity, and specificity, respectively. This high performance shows the ability of the system to distinguish between the malignant and benign nodules precisely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...